Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gaël Labat ${ }^{\text {a }}$ and Joan Halfpenny ${ }^{\text {b }}$ *

${ }^{\mathrm{a}}$ Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2007 Neuchâtel, Switzerland, and ${ }^{\mathbf{b}}$ Department of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England

Correspondence e-mail: gael.labat@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.033$
$w R$ factor $=0.072$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,5-Bis(3-thienyloxy)-3-oxapentane: a thiophenebased precursor for thiophene-based azacryptand Mannich bases

The title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}_{2}$, is composed of two thiophene rings bridged by an $-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ - chain. The molecule is U-shaped, with the two thiophene rings inclined to one another by 83.21 (10) ${ }^{\circ}$. In the crystal structure, the molecules are bridged by $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a double-stranded polymer chain.

Comment

The preparation of a range of open-chain cryptand-like structures, incorporating thiophene rings, as precursors for azacryptand Mannich bases, was undertaken by Barker et al. (1993) and Chaffin et al. (2001, 2002). The title compound, (I), was synthesized by the reaction of methyl 3-hydroxythio-phene-2-carboxylate with 1,5-bis(p-tolylsulfonyloxy)-3-oxapentane and anhydrous potassium carbonate in anhydrous N, N-dimethylformamide, followed by saponification and decarboxylation.

(I)

The molecular structure of (I) is illustrated in Fig. 1 and selected bond distances and angles are given in Table 1. The molecule is U-shaped and has pseudo- C_{2} symmetry, with the central $-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ - bridge having a cis-cis conformation. The two thiophene rings are inclined to one another by $83.21(10)^{\circ}$. The thiophene bond lengths and bond angles are similar to those in an unsubstituted thiophene reported by Bonham \& Momany (1963). The thienyloxy and other bond lengths and angles in (I) are in agreement with standard values (International Tables for Crystallography, Vol. C, 1995). In the crystal structure, symmetry-related molecules are bridged by $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming a double-stranded polymer chain (Fig. 2).

Experimental

Compound (I) was synthesized using the procedure described by Chaffin et al. (2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a $1: 1$ ethanol-dichloromethane solution.

Received 26 July 2005
Accepted 1 August 2005
Online 6 August 2005

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}_{2}$
$M_{r}=270.35$
Monoclinic, $P 2_{1} / n$
$a=5.2998(4) \AA$
$b=19.4005(18) \AA$
$c=12.7277(9) \AA$
$\beta=100.960(8)^{\circ}$
$V=1284.78(18) \AA^{\circ}$
$Z=4$
$D_{x}=1.398 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8000 reflections
$\theta=1.7-26.1^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Plate, colourless
$0.50 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer ω scans
Absorption correction: none
10146 measured reflections
2509 independent reflections
1609 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.072$
$S=0.85$
2509 reflections
154 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.066 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-23 \rightarrow 23 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C4	$1.705(2)$	O3-C8	$1.428(2)$
S1-C1	$1.717(2)$	C1-C2	$1.356(3)$
S2-C12	$1.701(2)$	C3-C4	$1.353(3)$
S2-C9	$1.716(3)$	C5-C6	$1.503(3)$
O1-C2	$1.368(2)$	C7-C8	$1.490(3)$
O1-C5	$1.425(2)$	C9-C10	$1.362(3)$
O2-C6	$1.414(3)$	C10-C11	$1.414(3)$
O2-C7	$1.421(2)$	C11-C12	$1.346(3)$
O3-C10	$1.362(3)$		
C4-S1-C1	$91.89(10)$	C3-C4-S1	$112.15(16)$
C12-S2-C9	$91.92(11)$	O1-C5-C6	$107.58(16)$
C2-O1-C5	$116.42(15)$	O2-C6-C5	$108.33(17)$
C6-O2-C7	$111.88(16)$	O2-C7-C8	$109.35(18)$
C10-O3-C8	$115.46(16)$	C10-C9-S2	$110.66(17)$
C2-C1-S1	$110.59(15)$	C9-C10-O3	$128.5(2)$
C1-C2-O1	$128.80(18)$	C9-C10-C11	$112.9(2)$
C1-C2-C3	$113.61(18)$	O3-C10-C11	$118.64(18)$
O1-C2-C3	$117.59(17)$	C12-C11-C10	$112.3(2)$
C4-C3-C2	$111.76(19)$	C11-C12-S2	$112.15(18)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.52	$3.358(2)$	148
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{~S}^{\mathrm{ii}}$	0.95	2.86	$3.787(2)$	164

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x+1, y, z+1$.

H atoms were included in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: EXPOSE (Stoe \& Cie, 2002); cell refinement: $C E L L$ (Stoe \& Cie, 2002); data reduction: INTEGRATE (Stoe \& Cie, 2002); program(s) used to solve structure: $S H E L X S 97$ (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick,

Figure 1
View of the molecular structure of compound (I), showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The crystal packing of compound (I), viewed down the a axis. $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.
1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Helen Stoeckli-Evans (Université de Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

Barker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. \& Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733-1734.

Bonham, R. A. \& Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477.
Chaffin, J. D. E., Barker, J. M. \& Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.
Chaffin, J. D. E., Barker, J. M. \& Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.

