Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gaël Labat^a and Joan Halfpenny^b*

^aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2007 Neuchâtel, Switzerland, and ^bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England

Correspondence e-mail: gael.labat@unine.ch

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.003 Å R factor = 0.033 wR factor = 0.072 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,5-Bis(3-thienyloxy)-3-oxapentane: a thiophenebased precursor for thiophene-based azacryptand Mannich bases

The title compound, $C_{12}H_{14}O_3S_2$, is composed of two thiophene rings bridged by an $-O(CH_2)_2O(CH_2)_2O$ chain. The molecule is U-shaped, with the two thiophene rings inclined to one another by 83.21 (10)°. In the crystal structure, the molecules are bridged by $C-H\cdots S$ and $C-H\cdots O$ hydrogen bonds, forming a double-stranded polymer chain.

Received 26 July 2005 Accepted 1 August 2005 Online 6 August 2005

Comment

The preparation of a range of open-chain cryptand-like structures, incorporating thiophene rings, as precursors for azacryptand Mannich bases, was undertaken by Barker *et al.* (1993) and Chaffin *et al.* (2001, 2002). The title compound, (I), was synthesized by the reaction of methyl 3-hydroxythiophene-2-carboxylate with 1,5-bis(*p*-tolylsulfonyloxy)-3-oxapentane and anhydrous potassium carbonate in anhydrous N,N-dimethylformamide, followed by saponification and decarboxylation.

The molecular structure of (I) is illustrated in Fig. 1 and selected bond distances and angles are given in Table 1. The molecule is U-shaped and has pseudo- C_2 symmetry, with the central $-O(CH_2)_2O(CH_2)_2O-$ bridge having a *cis-cis* conformation. The two thiophene rings are inclined to one another by 83.21 (10)°. The thiophene bond lengths and bond angles are similar to those in an unsubstituted thiophene reported by Bonham & Momany (1963). The thienyloxy and other bond lengths and angles in (I) are in agreement with standard values (*International Tables for Crystallography*, Vol. C, 1995). In the crystal structure, symmetry-related molecules are bridged by $C-H\cdots S$ and $C-H\cdots O$ hydrogen bonds (Table 2), forming a double-stranded polymer chain (Fig. 2).

Experimental

Compound (I) was synthesized using the procedure described by Chaffin *et al.* (2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a 1:1 ethanol-dichloromethane solution.

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

organic papers

Crystal data

 $C_{12}H_{14}O_3S_2$ $M_r = 270.35$ Monoclinic, $P2_1/n$ a = 5.2998 (4) Å b = 19.4005 (18) Å c = 12.7277 (9) Å $\beta = 100.960 (8)^{\circ}$ V = 1284.78 (18) Å³ Z = 4

Data collection

Stoe IPDS diffractometer ω scans Absorption correction: none 10146 measured reflections 2509 independent reflections 1609 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	H-atom parameters constrained		
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2 (F_o^2) + (0.0331P)^2]$		
$wR(F^2) = 0.072$	where $P = (F_0^2 + 2F_c^2)/3$		
S = 0.85	$(\Delta/\sigma)_{\rm max} = 0.001$		
2509 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$		
154 parameters	$\Delta \rho_{\min} = -0.29 \text{ e } \text{\AA}^{-3}$		

 $D_x = 1.398 \text{ Mg m}^{-3}$

Cell parameters from 8000

Mo $K\alpha$ radiation

reflections

 $\theta = 1.7 - 26.1^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$

T = 153 (2) K

 $R_{int} = 0.066$ $\theta_{\rm max} = 26.0^{\circ}$

 $h = -6 \rightarrow 6$

 $k = -23 \rightarrow 23$

 $l = -15 \rightarrow 15$

Plate, colourless

 $0.50 \times 0.25 \times 0.10 \ \mathrm{mm}$

Table 1

Selected geometric parameters (Å, °).

S1-C4	1.705 (2)	O3-C8	1.428 (2)
S1-C1	1.717 (2)	C1-C2	1.356 (3)
S2-C12	1.701 (2)	C3-C4	1.353 (3)
S2-C9	1.716 (3)	C5-C6	1.503 (3)
O1-C2	1.368 (2)	C7-C8	1.490 (3)
O1-C5	1.425 (2)	C9-C10	1.362 (3)
O2-C6	1.414 (3)	C10-C11	1.414 (3)
O2-C7	1.421 (2)	C11-C12	1.346 (3)
O3-C10	1.362 (3)		
C4-S1-C1	91.89 (10)	C3-C4-S1	112.15 (16)
C12-S2-C9	91.92 (11)	O1-C5-C6	107.58 (16)
C2-O1-C5	116.42 (15)	O2-C6-C5	108.33 (17)
C6-O2-C7	111.88 (16)	O2-C7-C8	109.35 (18)
C10-O3-C8	115.46 (16)	C10-C9-S2	110.66 (17)
C2-C1-S1	110.59 (15)	C9-C10-O3	128.5 (2)
C1-C2-O1	128.80 (18)	C9-C10-C11	112.9 (2)
C1-C2-C3	113.61 (18)	O3-C10-C11	118.64 (18)
O1-C2-C3	117.59 (17)	C12-C11-C10	112.3 (2)
C4-C3-C2	111.76 (19)	C11-C12-S2	112.15 (18)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C9-H9A\cdotsO1^{i}\\ C12-H12A\cdotsS1^{ii} \end{array}$	0.95	2.52	3.358 (2)	148
	0.95	2.86	3.787 (2)	164

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x + 1, y, z + 1.

H atoms were included in calculated positions and treated as riding atoms, with C-H = 0.95–0.99 Å and $U_{iso}(H) = 1.2$ or 1.5 times $U_{\rm eq}$ (parent atom).

Data collection: EXPOSE (Stoe & Cie, 2002); cell refinement: CELL (Stoe & Cie, 2002); data reduction: INTEGRATE (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick,

Figure 1

View of the molecular structure of compound (I), showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of compound (I), viewed down the *a* axis. $C-H \cdots S$ and C-H···O hydrogen bonds are shown as dashed lines.

1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Helen Stoeckli-Evans (Université de Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

Barker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733-1734.

Bonham, R. A. & Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477.

Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.

Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2002). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.